MYCN-directed centrosome amplification requires MDM2-mediated suppression of p53 activity in neuroblastoma cells.

نویسندگان

  • Andrew D Slack
  • Zaowen Chen
  • Andrew D Ludwig
  • John Hicks
  • Jason M Shohet
چکیده

The MYC family oncogenes cause transformation and tumor progression by corrupting multiple cellular pathways, altering cell cycle progression, apoptosis, and genomic instability. Several recent studies show that MYCC (c-Myc) expression alters DNA repair mechanisms, cell cycle checkpoints, and karyotypic stability, and this is likely partially due to alterations in centrosome replication control. In neuroblastoma cell lines, MYCN (N-Myc) expression induces centrosome amplification in response to ionizing radiation. Centrosomes are cytoplasmic domains that critically regulate cytokinesis, and aberrations in their number or structure are linked to mitotic defects and karyotypic instability. Whereas centrosome replication is linked to p53 and Rb/E2F-mediated cell cycle progression, the mechanisms downstream of MYCN that generate centrosome amplification are incompletely characterized. We hypothesized that MDM2, a direct transcriptional target of MYCN with central inhibitory effects on p53, plays a role in MYC-mediated genomic instability by altering p53 responses to DNA damage, facilitating centrosome amplification. Herein we show that MYCN mediates centrosome amplification in a p53-dependent manner. Accordingly, inhibition of the p53-MDM2 interaction with Nutlin 3A (which activates p53) completely ablates the MYCN-dependent contribution to centrosome amplification after ionizing radiation. We further show that modulating MDM2 expression levels by overexpression or RNA interference-mediated posttranscriptional inhibition dramatically affects centrosome amplification in MYCN-induced cells, indicating that MDM2 is a necessary and sufficient mediator of MYCN-mediated centrosome amplification. Finally, we show a significant correlation between centrosome amplification and MYCN amplification in primary neuroblastoma tumors. These data support the hypothesis that elevated MDM2 levels contribute to MYCN-induced genomic instability through altered regulation of centrosome replication in neuroblastoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mdm2 deficiency suppresses MYCN-Driven neuroblastoma tumorigenesis in vivo.

Neuroblastoma is derived from neural crest precursor components of the peripheral sympathetic nervous system and accounts for more than 15% of all pediatric cancer deaths. A clearer understanding of the molecular basis of neuroblastoma is required for novel therapeutic approaches to improve morbidity and mortality. Neuroblastoma is uniformly p53 wild type at diagnosis and must overcome p53-medi...

متن کامل

Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma.

Circumvention of the p53 tumor suppressor barrier in neuroblastoma is rarely caused by TP53 mutation but might arise from inappropriately increased activity of its principal negative regulator MDM2. We show here that targeted disruption of the p53-MDM2 interaction by the small-molecule MDM2 antagonist nutlin-3 stabilizes p53 and selectively activates the p53 pathway in neuroblastoma cells with ...

متن کامل

Molecular mechanisms of MYCN-dependent apoptosis and the MDM2–p53 pathway: an Achille’s heel to be exploited for the therapy of MYCN-amplified neuroblastoma

The p53 oncosuppressor is very seldom mutated in neuroblastoma, but several mechanisms cooperate to its functional inactivation in this tumor. Increased MDM2 levels, due to genetic amplification or constitutive inhibition of p14( ARF), significantly contribute to this event highlighting p53 reactivation as an attractive perspective for neuroblastoma treatment. In addition to its role in tumorig...

متن کامل

p53 is a direct transcriptional target of MYCN in neuroblastoma.

MYCN amplification occurs in approximately 25% of neuroblastomas, where it is associated with rapid tumor progression and poor prognosis. MYCN plays a paradoxical role in driving cellular proliferation and inducing apoptosis. Based on observations of nuclear p53 accumulation in neuroblastoma, we hypothesized that MYCN may regulate p53 in this setting. Immunohistochemical analysis of 82 neurobla...

متن کامل

Galectin-3 Impairment of MYCN-Dependent Apoptosis-Sensitive Phenotype Is Antagonized by Nutlin-3 in Neuroblastoma Cells

MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neurobla...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 67 6  شماره 

صفحات  -

تاریخ انتشار 2007